博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
信息安全名词
阅读量:5239 次
发布时间:2019-06-14

本文共 1557 字,大约阅读时间需要 5 分钟。

彩虹表: 

彩虹表(Rainbow Tables)就是一个庞大的、针对各种可能的字母组合预先计算好的哈希值的集合,常用来破解md5。

相关文章

 

RainbowCrack

Introduction

RainbowCrack is a general propose implementation of Philippe Oechslin's . It crack hashes with rainbow tables.

RainbowCrack uses time-memory tradeoff algorithm to crack hashes. It differs from brute force hash crackers.

A brute force hash cracker generate all possible plaintexts and compute the corresponding hashes on the fly, then compare the hashes with the hash to be cracked. Once a match is found, the plaintext is found. If all possible plaintexts are tested and no match is found, the plaintext is not found. With this type of hash cracking, all intermediate computation results are discarded.

A time-memory tradeoff hash cracker need a pre-computation stage, at the time all plaintext/hash pairs within the selected hash algorithm, charset, plaintext length are computed and results are stored in files called rainbow table. It is time consuming to do this kind of computation. But once the one time pre-computation is finished, hashes stored in the table can be cracked with much better performance than a brute force cracker.

In this project, we focus on the development of optimized time-memory tradeoff implementation. GPU acceleration is another key feature of RainbowCrack software. By offloading most runtime computation to NVIDIA/AMD GPU, overall hash cracking performance can be improved further.

Several TB of generated rainbow tables for LM, NTLM, MD5 and SHA1 hash algorithms are listed .

 

转载于:https://www.cnblogs.com/jiftle/p/6660061.html

你可能感兴趣的文章
CAN总线波形中ACK位电平为什么会偏高?
查看>>
MyBatis课程2
查看>>
桥接模式-Bridge(Java实现)
查看>>
Spring的JdbcTemplate、NamedParameterJdbcTemplate、SimpleJdbcTemplate
查看>>
Mac下使用crontab来实现定时任务
查看>>
303. Range Sum Query - Immutable
查看>>
图片加载失败显示默认图片占位符
查看>>
【★】浅谈计算机与随机数
查看>>
解决 sublime text3 运行python文件无法input的问题
查看>>
javascript面相对象编程,封装与继承
查看>>
Atlas命名空间Sys.Data下控件介绍——DataColumn,DataRow和DataTable
查看>>
算法之搜索篇
查看>>
新的开始
查看>>
java Facade模式
查看>>
NYOJ 120校园网络(有向图的强连通分量)(Kosaraju算法)
查看>>
Leetcode 226: Invert Binary Tree
查看>>
http站点转https站点教程
查看>>
解决miner.start() 返回null
查看>>
bzoj 2007: [Noi2010]海拔【最小割+dijskstra】
查看>>
BZOJ 1001--[BeiJing2006]狼抓兔子(最短路&对偶图)
查看>>